Hardware implementation aspects of polar decoders and ultra high-speed LDPC decoders

نویسندگان

  • Athanasios P. Liavas
  • Amin Shokrollahi
  • Pascal Giard
  • Georgios Karakonstantis
  • Reza Ghanaatian
  • Pascal Meinerzhagen
چکیده

The goal of channel coding is to detect and correct errors that appear during the transmission of information. In the past few decades, channel coding has become an integral part of most communications standards as it improves the energy-efficiency of transceivers manyfold while only requiring a modest investment in terms of the required digital signal processing capabilities. The most commonly used channel codes in modern standards are low-density parity-check (LDPC) codes and Turbo codes, which were the first two types of codes to approach the capacity of several channels while still being practically implementable in hardware. The decoding algorithms for LDPC codes, in particular, are highly parallelizable and suitable for high-throughput applications. A new class of channel codes, called polar codes, was introduced recently. Polar codes have an explicit construction and low-complexity encoding and successive cancellation (SC) decoding algorithms. Moreover, polar codes are provably capacity achieving over a wide range of channels, making them very attractive from a theoretical perspective. Unfortunately, polar codes under standard SC decoding cannot compete with the LDPC and Turbo codes that are used in current standards in terms of their error-correcting performance. For this reason, several improved SC-based decoding algorithms have been introduced. The most prominent SC-based decoding algorithm is the successive cancellation list (SCL) decoding algorithm, which is powerful enough to approach the error-correcting performance of LDPC codes. The original SCL decoding algorithmwas described in an arithmetic domain that is not well-suited for hardware implementations and is not clear how an efficient SCL decoder architecture can be implemented. To this end, in this thesis, we re-formulate the SCL decoding algorithm in two distinct arithmetic domains, we describe efficient hardware architectures to implement the resulting SCL decoders, and we compare the decoders with existing LDPC and Turbo decoders in terms of their error-correcting performance and their implementation efficiency. Due to the ongoing technology scaling, the feature sizes of integrated circuits keep shrinking at a remarkable pace. As transistors and memory cells keep shrinking, it becomes increasingly difficult and costly (in terms of both area and power) to ensure that the implemented digital circuits always operate correctly. Thus, manufactured digital signal processing circuits, including channel decoder circuits, may not always operate correctly. Instead of discarding these faulty dies or using costly circuit-level fault mitigationmechanisms, an alternative approach is to try to live with certainmalfunctions, provided that the algorithm implemented by the circuit is sufficiently fault-tolerant. In this spirit, in this thesis we examine decoding of polar codes and LDPC codes under the assumption that the memories that are used within the decoders

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Low Density Parity Check Decoders using a New High Level Design Methodology

Low density parity check (LDPC) codes are error-correcting codes that offer huge advantages in terms of coding gain, throughput and power dissipation. Error correction algorithms are often implemented in hardware for fast processing to meet the real-time needs of communication systems. However hardware implementation of LDPC decoders using traditional hardware description language (HDL) based a...

متن کامل

Low-complexity Multi-Bit Iterative Decoders: Algorithms and Hardware Architectures

We present a new type of iterative decoders for low-density parity check (LDPC) codes that use simple Boolean functions for variable node processing and surpass the belief propagation decoders in the error floor region. We discuss the error performance, guaranteed error correction capability and speed and implementation complexity of these decoders as factors crucial for application that requir...

متن کامل

Unrolled Polar Decoders, Part II: Fast List Decoders

Polar codes asymptotically achieve the symmetric capacity of memoryless channels, yet their error-correcting performance under successive-cancellation (SC) decoding for short and moderate length codes is worse than that of other modern codes such as low-density parity-check (LDPC) codes. Of the many methods to improve the error-correction performance of polar codes, list decoding yields the bes...

متن کامل

On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.

We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We furth...

متن کامل

On Efficient Design of LDPC Decoders for Wireless Sensor Networks

Low density parity check (LDPC) codes are error-correcting codes that offer huge advantages in terms of coding gain, throughput and power dissipation in digital communication systems. Error correction algorithms are often implemented in hardware for fast processing to meet the real-time needs of communication systems. However,traditional hardware implementation of LDPC decoders require large am...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016